Classes of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance

نویسندگان

  • Grant A. Cheston
  • Gerd Fricke
چکیده

This paper investigates cases where one graph parameter, upper fractional domination, is equal to three others: independence, upper domination and upper irredundance. We show that they are all equal for a large subclass, known as strongly perfect graphs, of the class of perfect graphs. They are also equal for odd cycles and upper bound graphs. However for simplicial graphs, upper irredundance might not equal the others, which are all equal. Also for many subclasses of perfect graphs other than the strongly perfect class, independence, upper domination and upper irredundance are not necessarily equal. We also show that if the graph join operation is used to combine two graphs which have some of the parameters equal, the resulting graph will have the same parameters equal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independence Saturation and Extended Domination Chain in Graphs

The six basic parameters relating to domination, independence and irredundance satisfy a chain of inequalities given by ir ≤ γ ≤ i ≤ β0 ≤ Γ ≤ IR where ir, IR are the irredundance and upper irredundance numbers, γ,Γ are the domination and upper domination numbers and i, β0 are the independent domination number and independence number respectively. In this paper, we introduce the concept of indep...

متن کامل

The Domination Parameters of Cubic Graphs

Let ir(G), γ(G), i(G), β0(G), Γ(G) and IR(G) be the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number of a graph G, respectively. In this paper we show that for any integers k1, k2, k3, k4, k5 there exists a cubic graph G satisfying the following conditions: γ(G)−ir(G) ≥ k1, i(G)−...

متن کامل

Upper domination and upper irredundance perfect graphs

Let β(G), Γ(G) and IR(G) be the independence number, the upper domination number and the upper irredundance number, respectively. A graph G is called Γperfect if β(H) = Γ(H), for every induced subgraph H of G. A graph G is called IR-perfect if Γ(H) = IR(H), for every induced subgraph H of G. In this paper, we present a characterization of Γ-perfect graphs in terms of some family of forbidden in...

متن کامل

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

On the differences of the independence, domination and irredundance parameters of a graph

In this paper we present upper bounds on the differences between the independence, domination and irredundance parameters of a graph. For example, using the Brooks theorem on the chromatic number, we show that for any graph G of order n with maximum degree ∆ ≥ 2 IR(G)− β(G) ≤ ⌊ ∆− 2 2∆ n ⌋ , where β(G) and IR(G) are the independence number and the upper irredundance number of a graph G, respect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 55  شماره 

صفحات  -

تاریخ انتشار 1994